Free group of Hamel functions

Mateusz Lichman

joint work with M. Pawlikowski, Sz. Smolarek and J. Swaczyna

Łódź University of Technology

Winter School in Abstract Analysis, section Set Theory & Topology, 2022

• A subset H of \mathbb{R} (\mathbb{R}^2) is called a **Hamel basis** if it is a basis of \mathbb{R} (\mathbb{R}^2) over \mathbb{Q} .

- A subset H of \mathbb{R} (\mathbb{R}^2) is called a **Hamel basis** if it is a basis of \mathbb{R} (\mathbb{R}^2) over \mathbb{Q} .
- A function $f : \mathbb{R} \to \mathbb{R}$ is called a **Hamel function** if it is a Hamel basis of \mathbb{R}^2 .

- A subset H of \mathbb{R} (\mathbb{R}^2) is called a **Hamel basis** if it is a basis of \mathbb{R} (\mathbb{R}^2) over \mathbb{Q} .
- A function $f : \mathbb{R} \to \mathbb{R}$ is called a **Hamel function** if it is a Hamel basis of \mathbb{R}^2 . Then we write $f \in HF$.

/⊒ ▶ ◀ ⊒ ▶ ◀

- A subset H of \mathbb{R} (\mathbb{R}^2) is called a **Hamel basis** if it is a basis of \mathbb{R} (\mathbb{R}^2) over \mathbb{Q} .
- A function $f : \mathbb{R} \to \mathbb{R}$ is called a **Hamel function** if it is a Hamel basis of \mathbb{R}^2 . Then we write $f \in HF$.

Theorem (K. Płotka, 2003)

伺下 イヨト イヨト

- A subset H of \mathbb{R} (\mathbb{R}^2) is called a **Hamel basis** if it is a basis of \mathbb{R} (\mathbb{R}^2) over \mathbb{Q} .
- A function $f : \mathbb{R} \to \mathbb{R}$ is called a **Hamel function** if it is a Hamel basis of \mathbb{R}^2 . Then we write $f \in HF$.

Theorem (K. Płotka, 2003)

 $\mathsf{HF} + \mathsf{HF} = \mathbb{R}^{\mathbb{R}}.$

御 と く ヨ と く

Theorem (G. Matusik, T. Natkaniec, 2010)

伺 ト イヨト イヨト

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f : \mathbb{R} \to \mathbb{R}$.

< ∃ >

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f : \mathbb{R} \to \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.

伺下 イヨト イヨト

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f : \mathbb{R} \to \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.

Indeed, $A : \mathbb{R}^2 \to \mathbb{R}^2$ given by $A(x, y) = \langle y, x \rangle$ is a linear automorphism, so it preserves Hamel basis.

白とくほとく

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f : \mathbb{R} \to \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.

Indeed, $A : \mathbb{R}^2 \to \mathbb{R}^2$ given by $A(x, y) = \langle y, x \rangle$ is a linear automorphism, so it preserves Hamel basis.

Remark

Composition of Hamel bijections need not to be a Hamel bijection.

 $f \circ f^{-1} = \mathsf{id}$

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f : \mathbb{R} \to \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.

Indeed, $A : \mathbb{R}^2 \to \mathbb{R}^2$ given by $A(x, y) = \langle y, x \rangle$ is a linear automorphism, so it preserves Hamel basis.

Remark

Composition of Hamel bijections need not to be a Hamel bijection.

 $f \circ f^{-1} = \mathsf{id}$

Theorem (G. Matusik, T. Natkaniec, 2010)

 $\mathsf{HF} \circ \mathsf{HF} \circ \mathsf{HF} = \mathbb{R}^{\mathbb{R}}.$

イロト イボト イヨト イヨト

Definition

We say that a group (G, \star) is **free** if there exist a set $S \subset G$ of free generators: every element of G can be expressed in exactly one reduced way using generators $(a^2 \star a^3, a \star a^{-1})$ are not in reduced form).

Definition

We say that a group (G, \star) is **free** if there exist a set $S \subset G$ of free generators: every element of G can be expressed in exactly one reduced way using generators $(a^2 \star a^3, a \star a^{-1})$ are not in reduced form).

Elements of a free group are called words.

Definition

 $f \subset \mathbb{R} \times \mathbb{R}$ is called a **partial function** if $f \in \mathbb{R}^X$ for some $X \subset \mathbb{R}$.

< ∃ >

3)) B

Definition

 $f \subset \mathbb{R} \times \mathbb{R}$ is called a **partial function** if $f \in \mathbb{R}^X$ for some $X \subset \mathbb{R}$.

$$_0f_0 = \emptyset \quad _0f_1 = \emptyset \quad \quad _0f_{\gamma} = \emptyset \quad$$

э

Definition

 $f \subset \mathbb{R} \times \mathbb{R}$ is called a **partial function** if $f \in \mathbb{R}^X$ for some $X \subset \mathbb{R}$.

ſ	$_0f_0=\emptyset$	$_0f_1 = \emptyset$	 $_0f_\gamma=\emptyset$	
ſ	$_{1}f_{0}$	$_{1}f_{1}$	 $_1 f_\gamma$	

★ ∃ ► < ∃ ►</p>

э

Definition

 $f \subset \mathbb{R} \times \mathbb{R}$ is called a **partial function** if $f \in \mathbb{R}^X$ for some $X \subset \mathbb{R}$.

$_0 f_0 = \emptyset$	$_0f_1 = \emptyset$	 $_0f_\gamma=\emptyset$	
$_1 f_0$	$_{1}f_{1}$	 $_1 f_\gamma$	
ξf_0	ξf_1	 $_{\xi}f_{\gamma}$	

< ∃ >

3)) B

Definition

 $f \subset \mathbb{R} \times \mathbb{R}$ is called a **partial function** if $f \in \mathbb{R}^X$ for some $X \subset \mathbb{R}$.

$_0 f_0 = \emptyset$	$_0f_1=\emptyset$		
1 f ₀	$_{1}f_{1}$	 $_1 f_\gamma$	
_ξ f ₀	ξf_1	 $_{\xi}f_{\gamma}$	

э

★ 문 ► ★ 문 ►

Definition

 $f \subset \mathbb{R} \times \mathbb{R}$ is called a **partial function** if $f \in \mathbb{R}^X$ for some $X \subset \mathbb{R}$.

c d	c d	a a	
$_0 f_0 = \emptyset$	$_0f_1 = \emptyset$	 $_0f_\gamma=\emptyset$	
$_1 f_0$	$_{1}f_{1}$	 $_1 f_\gamma$	
ξf_0	ξf_1	 $_{\xi}f_{\gamma}$	
$f_0 :=$	$f_1 :=$	$f_\gamma :=$	
$\bigcup_{\alpha < \mathfrak{c}} {}_{\alpha} f_0$	$\bigcup_{\alpha < \mathfrak{c} \alpha} f_1$	 $\bigcup_{\alpha < \mathfrak{c} \alpha} f_{\gamma}$	

< ∃ >

3)) B

- The class of linearly independent functions will be denoted by LIF.
- The class of partial functions that are linearly independent will be denoted by PLIF.

()

 \bullet The class of linearly independent functions will be denoted by LIF.

• The class of partial functions that are linearly independent will be denoted by PLIF.

Observation

$$\{0\} \times \mathbb{R} \subset \mathsf{LIN}_{\mathbb{Q}}(f) \implies \mathbb{R}^2 \subset \mathsf{LIN}_{\mathbb{Q}}(f).$$

< ∃ >

 \bullet The class of linearly independent functions will be denoted by LIF.

• The class of partial functions that are linearly independent will be denoted by PLIF.

Observation

$$\{0\} \times \mathbb{R} \subset \mathsf{LIN}_{\mathbb{Q}}(f) \implies \mathbb{R}^2 \subset \mathsf{LIN}_{\mathbb{Q}}(f).$$

Indeed, let $\langle x, y \rangle \in \mathbb{R}^2$. Then

$$\langle x, y \rangle = \langle 0, y - f(x) \rangle + \langle x, f(x) \rangle.$$

Preparation for the construction

Let

$$\mathbb{R} \times \mathfrak{c} = \{ (x_{\kappa}, \alpha_{\kappa}) : \kappa < \mathfrak{c} \}.$$

æ

★ 문 ⊁

Let

$$\mathbb{R} \times \mathfrak{c} = \{ (\mathbf{x}_{\kappa}, \alpha_{\kappa}) : \kappa < \mathfrak{c} \}.$$

Now consider a set W of all the reduced words that can be composed from the generators, i. e. functions of the form

$$h=f_{\gamma_1}^{k_1}\circ...\circ f_{\gamma_m}^{k_m}.$$

where $m \ge 1$, $k_i \in \mathbb{Z} \setminus \{0\}$, $\gamma_i < \mathfrak{c}$ and $\gamma_i \neq \gamma_{i+1}$.

Let

$$\mathbb{R} \times \mathfrak{c} = \{ (\mathbf{x}_{\kappa}, \alpha_{\kappa}) : \kappa < \mathfrak{c} \}.$$

Now consider a set W of all the reduced words that can be composed from the generators, i. e. functions of the form

$$h = f_{\gamma_1}^{k_1} \circ \ldots \circ f_{\gamma_m}^{k_m}.$$

where $m \ge 1$, $k_i \in \mathbb{Z} \setminus \{0\}$, $\gamma_i < \mathfrak{c}$ and $\gamma_i \neq \gamma_{i+1}$. Let

$$W = \{h_{\alpha} : \alpha < \mathfrak{c}\}.$$

Let

$$\mathbb{R} \times \mathfrak{c} = \{ (x_{\kappa}, \alpha_{\kappa}) : \kappa < \mathfrak{c} \}.$$

Now consider a set W of all the reduced words that can be composed from the generators, i. e. functions of the form

$$h=f_{\gamma_1}^{k_1}\circ\ldots\circ f_{\gamma_m}^{k_m}.$$

where $m \ge 1$, $k_i \in \mathbb{Z} \setminus \{0\}$, $\gamma_i < \mathfrak{c}$ and $\gamma_i \neq \gamma_{i+1}$. Let

$$W = \{h_{\alpha} : \alpha < \mathfrak{c}\}.$$

If $h_{\alpha} = f_{\gamma_1}^{k_1} \circ ... \circ f_{\gamma_m}^{k_m}$ then by $_{\xi} h_{\alpha}$ we will denote $_{\xi} f_{\gamma_1}^{k_1} \circ ... \circ_{\xi} f_{\gamma_m}^{k_m}$,

i. e. the word h_{α} at the ξ -stage of the construction.

Conditions

For every $\beta < \mathfrak{c}$ (number of the generator/word) and for every $\kappa < \mathfrak{c}$ (number of the stage of construction):

< ∃ >

Conditions

- For every $\beta < \mathfrak{c}$ (number of the generator/word) and for every $\kappa < \mathfrak{c}$ (number of the stage of construction):
 - (1) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;

(III)
$$_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$$
 for $\xi < \kappa$;

(IV)
$$|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$$

(V)
$$_{\kappa}h_{\beta} \in \mathsf{PLIF};$$

$$(\mathsf{VI}) \ \langle 0, x_{\kappa} \rangle \in \mathsf{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$$

(VII)
$$x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$$

(VIII)
$$x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$$

At the end for every $\beta < \mathfrak{c}$ let

$$f_{\beta} \coloneqq \bigcup_{\kappa < \mathfrak{c}} {}_{\kappa} f_{\beta}.$$

• • = • • = •

These conditions assure that for every $\beta < \mathfrak{c}$, $f_{\beta} \in \mathbb{R}^{\mathbb{R}}$.

- (I) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;
- (III) $_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi < \kappa$;
- (IV) $|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$
- (V) $_{\kappa}h_{\beta} \in \mathsf{PLIF};$
- (VI) $\langle 0, x_{\kappa} \rangle \in \mathsf{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$
- (VII) $x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$
- (VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

These conditions assure that we get bijections.

- (1) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;

(III)
$$_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$$
 for $\xi < \kappa$;

(IV)
$$|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$$

(V)
$$_{\kappa}h_{\beta} \in \mathsf{PLIF};$$

(VI)
$$\langle 0, x_{\kappa} \rangle \in \text{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$$

(VII)
$$x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$$

(VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

These conditions assure that every word is a Hamel basis.

- (1) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;
- (III) $_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi < \kappa$;
- (IV) $|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$
- (V) $_{\kappa}h_{\beta} \in \mathsf{PLIF};$
- (VI) $\langle 0, x_{\kappa} \rangle \in \mathsf{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$
- (VII) $x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$
- (VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

Why do these conditions suffice?

This condition assures that the set of generators is free (and therefore its cardinality is \mathfrak{c}).

- (I) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;
- (III) $_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi < \kappa$;
- (IV) $|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$
- (V) $_{\kappa}h_{\beta} \in \mathsf{PLIF};$
- (VI) $\langle 0, x_{\kappa} \rangle \in \text{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$
- (VII) $x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$
- (VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

Why do these conditions suffice?

This condition assures that the set of generators is free (and therefore its cardinality is \mathfrak{c}).

- (1) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;
- (III) $_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi < \kappa$;
- (IV) $|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$
- (V) $_{\kappa}h_{\beta} \in \mathsf{PLIF};$
- (VI) $\langle 0, x_{\kappa} \rangle \in \text{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$
- (VII) $x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$

(VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

Indeed, if it was not, some function would have two representations that do not reduce. Composing the function with its inverse would lead to a nontrivial representation of the identity function, a contradiction.

We will see that this condition will enable us to make the inductive step.

- (1) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;
- (III) $_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi < \kappa$;
- (IV) $|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$
- (V) $_{\kappa}h_{\beta} \in \mathsf{PLIF};$
- (VI) $\langle 0, x_{\kappa} \rangle \in \text{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$
- (VII) $x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$
- (VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

The highlighted conditions are true from the very beginning of our construction. We just need to make sure we don't break any of these.

(I) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);

(II)
$$_{\kappa}f_{\beta}$$
 is one-to-one;

- (III) $_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi < \kappa$;
- (IV) $|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$
- (V) $_{\kappa}h_{\beta} \in \mathsf{PLIF};$
- (VI) $\langle 0, x_{\kappa} \rangle \in \operatorname{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$
- (VII) $x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$
- (VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

On the other hand, conditions (VI)-(VII) are the conditions that we need to make work.

- (1) $_{\kappa}f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
- (II) $_{\kappa}f_{\beta}$ is one-to-one;
- (III) $_{\xi}f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi < \kappa$;
- (IV) $|\bigcup_{\gamma < \beta \kappa} f_{\gamma}| \leq |\kappa| + \omega;$
- (V) $_{\kappa}h_{\beta} \in \mathsf{PLIF};$
- (VI) $\langle 0, x_{\kappa} \rangle \in \text{LIN}_{\mathbb{Q}}(_{\kappa+1}h_{\alpha_{\kappa}});$
- (VII) $x_{\kappa} \in \operatorname{dom}(_{\kappa+1}f_{\alpha_{\kappa}});$
- (VIII) $x_{\kappa} \in \operatorname{rng}(_{\kappa+1}f_{\alpha_{\kappa}}).$

Assume that for each β (number of generator) $_{\xi}f_{\beta}$ are constructed for $\xi < \eta$. If η is a limit cardinal then for each β we let

$$_{\eta}f_{\beta} = \bigcup_{\xi < \eta} {}_{\xi}f_{\beta}.$$

Otherwise $\eta = \kappa + 1$ for some κ .

• • = • • = •

Assume that for each β (number of generator) $_{\xi}f_{\beta}$ are constructed for $\xi < \eta$. If η is a limit cardinal then for each β we let

$${}_{\eta}f_{eta} = igcup_{\xi < \eta}{}_{\xi}f_{eta}$$

Otherwise $\eta = \kappa + 1$ for some κ .

STEP I

In this step we make sure that (VI) holds.

Assume that for each β (number of generator) $_{\xi}f_{\beta}$ are constructed for $\xi < \eta$. If η is a limit cardinal then for each β we let

$$_{\eta}f_{eta} = igcup_{\xi < \eta}{}_{\xi}f_{eta}$$

Otherwise $\eta = \kappa + 1$ for some κ .

STEP I

In this step we make sure that (VI) holds. If $(0, x_{\kappa}) \in \text{LIN}_{\mathbb{Q}}(\kappa h_{\alpha_{\kappa}})$, we don't change anything. Let's look at the other case.

• • = • • = •

Let

$$_{\kappa}f_{\gamma_{1}}^{k_{1}}\circ...\circ_{\kappa}f_{\gamma_{m}}^{k_{m}}$$

be the reduced form of the (partial) word $_{\kappa}h_{\alpha_{\kappa}}$.

э

伺 ト イヨト イヨト

$$_{\kappa}f_{\gamma_{1}}^{k_{1}}\circ...\circ_{\kappa}f_{\gamma_{m}}^{k_{m}}$$

$$_{\kappa}f_{\gamma_{1}}^{k_{1}}\circ...\circ_{\kappa}f_{\gamma_{m}}^{k_{m}}$$

First we choose x linearly independent of F.

$$_{\kappa}f_{\gamma_{1}}^{k_{1}}\circ...\circ_{\kappa}f_{\gamma_{m}}^{k_{m}}$$

First we choose x linearly independent of F. Then we choose y independent of $F \cup \{x\}$.

$$_{\kappa}f_{\gamma_1}^{k_1}\circ\ldots\circ_{\kappa}f_{\gamma_m}^{k_m}$$

First we choose x linearly independent of F. Then we choose y independent of $F \cup \{x\}$. Then we have to choose

$$2 \cdot \sum |k_i|$$

pairs of points and add them to appropiate f_{γ_i} 's in the way that $\langle x, y \rangle$, $\langle -x, x_{\kappa} - y \rangle$ are in the extended $_{\kappa}h_{\alpha_{\kappa}}$.

$$_{\kappa}f_{\gamma_1}^{k_1}\circ\ldots\circ_{\kappa}f_{\gamma_m}^{k_m}$$

First we choose x linearly independent of F. Then we choose y independent of $F \cup \{x\}$. Then we have to choose

$$2 \cdot \sum |k_i|$$

pairs of points and add them to appropriate f_{γ_i} 's in the way that $\langle x, y \rangle$, $\langle -x, x_{\kappa} - y \rangle$ are in the extended $_{\kappa}h_{\alpha_{\kappa}}$. It is easy to check that conditions (I)-(IV) still hold. (V) remains true because we were chosing point that were linearly independent.

STEP II and STEP III

In these steps we have to make conditions (VII) and (VIII) hold. The argument showing that it can be done without breaking conditions (I)-(V) is the same - the set of "forbidden" point is not equal to \mathbb{R} .

STEP II and STEP III

In these steps we have to make conditions (VII) and (VIII) hold. The argument showing that it can be done without breaking conditions (I)-(V) is the same - the set of "forbidden" point is not equal to \mathbb{R} .

At the end we let $_{\kappa+1}f_{\beta}$ be the extended version of $_{\kappa}f_{\beta}$ or $_{\kappa+1}f_{\beta} =_{\kappa}f_{\beta}$ if it was not changed in steps I-III.

Problem

Does there exists a group of Hamel bijections with 2^c generators?

< ∃ >

Problem

Does there exists a group of Hamel bijections with 2^c generators?

Question to the audience

Do you know other examples of large free groups within some structures?

Problem

Does there exists a group of Hamel bijections with 2^c generators?

Question to the audience

Do you know other examples of large free groups within some structures?

Thank you for your attention!

- G. Matusik, T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hungar., 126 (3), 2010, 209-229.
- K. Płotka, On functions whose graph is a Hamel basis, Proc. Amer. Math. Soc., 131, 2003, 1031-1041.