Free group of Hamel functions

Mateusz Lichman
joint work with M. Pawlikowski, Sz. Smolarek and J. Swaczyna

> Łódź University of Technology

Winter School in Abstract Analysis, section Set Theory \& Topology, 2022

Basics

- A subset H of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ is called a Hamel basis if it is a basis of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ over \mathbb{Q}.

Basics

- A subset H of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ is called a Hamel basis if it is a basis of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}.

Basics

- A subset H of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ is called a Hamel basis if it is a basis of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}. Then we write $f \in \mathrm{HF}$.

Basics

- A subset H of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ is called a Hamel basis if it is a basis of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}. Then we write $f \in \mathrm{HF}$.

Theorem (K. Płotka, 2003)

Basics

- A subset H of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ is called a Hamel basis if it is a basis of $\mathbb{R}\left(\mathbb{R}^{2}\right)$ over \mathbb{Q}.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a Hamel function if it is a Hamel basis of \mathbb{R}^{2}. Then we write $f \in \mathrm{HF}$.

Theorem (K. Płotka, 2003)
$\mathrm{HF}+\mathrm{HF}=\mathbb{R}^{\mathbb{R}}$.

Hamel bijections, compositions

Theorem (G. Matusik, T. Natkaniec, 2010)

Hamel bijections, compositions

Theorem (G. Matusik, T. Natkaniec, 2010)
There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Hamel bijections, compositions

Theorem (G. Matusik, T. Natkaniec, 2010)
There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.

Hamel bijections, compositions

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.
Indeed, $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $A(x, y)=\langle y, x\rangle$ is a linear automorphism, so it preserves Hamel basis.

Hamel bijections, compositions

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.
Indeed, $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $A(x, y)=\langle y, x\rangle$ is a linear automorphism, so it preserves Hamel basis.

Remark

Composition of Hamel bijections need not to be a Hamel bijection.
$f \circ f^{-1}=\mathrm{id}$

Hamel bijections, compositions

Theorem (G. Matusik, T. Natkaniec, 2010)

There exists a Hamel bijection $f: \mathbb{R} \rightarrow \mathbb{R}$.

Fact

For every Hamel bijection f, f^{-1} is a Hamel bijection.
Indeed, $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $A(x, y)=\langle y, x\rangle$ is a linear automorphism, so it preserves Hamel basis.

Remark

Composition of Hamel bijections need not to be a Hamel bijection.
$f \circ f^{-1}=\mathrm{id}$
Theorem (G. Matusik, T. Natkaniec, 2010)
$\mathrm{HF} \circ \mathrm{HF} \circ \mathrm{HF}=\mathbb{R}^{\mathbb{R}}$.

The goal

Definition

We say that a group (G, \star) is free if there exist a set $S \subset G$ of free generators: every element of G can be expressed in exactly one reduced way using generators $\left(a^{2} \star a^{3}, a \star a^{-1}\right.$ are not in reduced form).

Definition

We say that a group (G, \star) is free if there exist a set $S \subset G$ of free generators: every element of G can be expressed in exactly one reduced way using generators $\left(a^{2} \star a^{3}, a \star a^{-1}\right.$ are not in reduced form).
Elements of a free group are called words.

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

$$
\begin{array}{|l|l|l|l|l|}
\hline o f_{0}=\emptyset & \text { of } f_{1}=\emptyset & \ldots & o f_{\gamma}=\emptyset & \ldots \ldots \ldots \ldots \ldots
\end{array}
$$

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }_{0} f_{\gamma}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
${ }_{1} f_{0}$	${ }_{1} f_{1}$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }_{1} f_{\gamma}$	$\ldots \ldots \ldots \ldots \ldots \ldots$

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }_{0} f_{\gamma}=\emptyset$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
${ }_{1} f_{0}$	$1_{1} f_{1}$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }_{1} f_{\gamma}$	$\ldots \ldots \ldots \ldots \ldots \ldots$
\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots
ξ_{0}	$\xi_{1} f_{1}$	$\ldots \ldots \ldots \ldots \ldots \ldots$	${ }^{f_{\gamma}}$	$\ldots \ldots \ldots \ldots \ldots \ldots$

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$	${ }_{0} f_{\gamma}=\emptyset$
${ }_{1} f_{0}$	${ }_{1} f_{1}$	\ldots	${ }_{1} f_{\gamma}$
\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots
${ }_{\xi} f_{0}$	${ }_{\xi} f_{1}$	$\ldots \ldots$.	${ }_{\xi} f_{\gamma}$	$\ldots \ldots$.
...	\ldots	\cdots	\cdots	\cdots
\ldots	\ldots	\ldots	\ldots	\ldots

The idea

Definition

$f \subset \mathbb{R} \times \mathbb{R}$ is called a partial function if $f \in \mathbb{R}^{X}$ for some $X \subset \mathbb{R}$.

${ }_{0} f_{0}=\emptyset$	${ }_{0} f_{1}=\emptyset$.	${ }_{0} f_{\gamma}=\emptyset$
${ }_{1} f_{0}$	${ }_{1} f_{1}$	${ }_{1} f_{\gamma}$
\ldots	.	.	\ldots	\cdots
...	\ldots	...	\ldots	...
${ }_{\xi} f_{0}$	$\xi^{f_{1}}$	$\xi^{f_{\gamma}}$
\cdots	\ldots	\ldots	\cdots	\cdots
\ldots	\ldots	\ldots	\ldots	\ldots
$\begin{gathered} f_{0}:= \\ \bigcup_{\alpha<\mathfrak{c} \alpha} f_{0} \end{gathered}$	$\begin{gathered} f_{1}:= \\ \bigcup_{\alpha<\mathfrak{c}} f_{1} \end{gathered}$	\ldots	$\begin{gathered} f_{\gamma}:= \\ \bigcup_{\alpha<\mathfrak{c} \alpha} f_{\gamma} \end{gathered}$

- The class of linearly independent functions will be denoted by LIF.
- The class of partial functions that are linearly independent will be denoted by PLIF.

Preparation for the construction

- The class of linearly independent functions will be denoted by LIF.
- The class of partial functions that are linearly independent will be denoted by PLIF.

Observation $\{0\} \times \mathbb{R} \subset \operatorname{LIN}_{\mathbb{Q}}(f) \Longrightarrow \mathbb{R}^{2} \subset \operatorname{LIN}_{\mathbb{Q}}(f)$.

- The class of linearly independent functions will be denoted by LIF.
- The class of partial functions that are linearly independent will be denoted by PLIF.

Observation
$\{0\} \times \mathbb{R} \subset \operatorname{LIN}_{\mathbb{Q}}(f) \Longrightarrow \mathbb{R}^{2} \subset \operatorname{LIN}_{\mathbb{Q}}(f)$.
Indeed, let $\langle x, y\rangle \in \mathbb{R}^{2}$. Then

$$
\langle x, y\rangle=\langle 0, y-f(x)\rangle+\langle x, f(x)\rangle .
$$

Preparation for the construction

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\}
$$

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\}
$$

Now consider a set W of all the reduced words that can be composed from the generators, i. e. functions of the form

$$
h=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}} .
$$

where $m \geqslant 1, k_{i} \in \mathbb{Z} \backslash\{0\}, \gamma_{i}<\mathfrak{c}$ and $\gamma_{i} \neq \gamma_{i+1}$.

Preparation for the construction

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\} .
$$

Now consider a set W of all the reduced words that can be composed from the generators, i. e. functions of the form

$$
h=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}} .
$$

where $m \geqslant 1, k_{i} \in \mathbb{Z} \backslash\{0\}, \gamma_{i}<\mathfrak{c}$ and $\gamma_{i} \neq \gamma_{i+1}$. Let

$$
W=\left\{h_{\alpha}: \alpha<\mathfrak{c}\right\}
$$

Let

$$
\mathbb{R} \times \mathfrak{c}=\left\{\left(x_{\kappa}, \alpha_{\kappa}\right): \kappa<\mathfrak{c}\right\}
$$

Now consider a set W of all the reduced words that can be composed from the generators, i. e. functions of the form

$$
h=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}} .
$$

where $m \geqslant 1, k_{i} \in \mathbb{Z} \backslash\{0\}, \gamma_{i}<\mathfrak{c}$ and $\gamma_{i} \neq \gamma_{i+1}$. Let

$$
W=\left\{h_{\alpha}: \alpha<\mathfrak{c}\right\}
$$

If $h_{\alpha}=f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ f_{\gamma_{m}}^{k_{m}}$ then by ${ }_{\xi} h_{\alpha}$ we will denote

$$
\xi_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\xi} f_{\gamma_{m}}^{k_{m}},
$$

i. e. the word h_{α} at the ξ-stage of the construction.

Conditions

For every $\beta<\mathfrak{c}$ (number of the generator/word) and for every $\kappa<\mathfrak{c}$ (number of the stage of construction):

Conditions

For every $\beta<\mathfrak{c}$ (number of the generator/word) and for every $\kappa<\mathfrak{c}$ (number of the stage of construction):
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R})$;
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} f_{\beta}{ }_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

At the end for every $\beta<\mathfrak{c}$ let

$$
f_{\beta}:=\bigcup_{\kappa<\mathfrak{c}} \kappa f_{\beta}
$$

Why do these conditions suffice?

These conditions assure that for every $\beta<\mathfrak{c}, f_{\beta} \in \mathbb{R}^{\mathbb{R}}$.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}$);
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

These conditions assure that we get bijections.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R})$;
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) ${ }_{\xi} f_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

These conditions assure that every word is a Hamel basis.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R})$;
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

This condition assures that the set of generators is free (and therefore its cardinality is \mathfrak{c}).
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}) ;$
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Why do these conditions suffice?

This condition assures that the set of generators is free (and therefore its cardinality is \mathfrak{c}).
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}) ;$
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Indeed, if it was not, some function would have two representations that do not reduce. Composing the function with its inverse would lead to a nontrivial representation of the identity function, a contradiction.

Why do these conditions suffice?

We will see that this condition will enable us to make the inductive step.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R})$;
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} f_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right)$;
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

How do we care about them?

The highlighted conditions are true from the very beginning of our construction. We just need to make sure we don't break any of these.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R}) ;$
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} \subset_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right) ;$
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

How do we care about them?

On the other hand, conditions $(\mathrm{VI})-(\mathrm{VII})$ are the conditions that we need to make work.
(I) ${ }_{\kappa} f_{\beta}$ is a partial function (has at most one value in every $x \in \mathbb{R})$;
(II) ${ }_{\kappa} f_{\beta}$ is one-to-one;
(III) $\xi_{\beta} f_{\kappa} f_{\beta}$ for $\xi<\kappa$;
(IV) $\left|\bigcup_{\gamma<\beta \kappa} f_{\gamma}\right| \leqslant|\kappa|+\omega$;
(V) ${ }_{\kappa} h_{\beta} \in$ PLIF;
(VI) $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left({ }_{\kappa+1} h_{\alpha_{\kappa}}\right) ;$
(VII) $x_{\kappa} \in \operatorname{dom}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$;
(VIII) $x_{\kappa} \in \operatorname{rng}\left({ }_{\kappa+1} f_{\alpha_{\kappa}}\right)$.

Construction

Assume that for each β (number of generator) ${ }_{\xi} f_{\beta}$ are constructed for $\xi<\eta$. If η is a limit cardinal then for each β we let

$$
{ }_{\eta} f_{\beta}=\bigcup_{\xi<\eta}{ }_{\xi} f_{\beta} .
$$

Otherwise $\eta=\kappa+1$ for some κ.

Construction

Assume that for each β (number of generator) ${ }_{\xi} f_{\beta}$ are constructed for $\xi<\eta$. If η is a limit cardinal then for each β we let

$$
{ }_{\eta} f_{\beta}=\bigcup_{\xi<\eta}{ }_{\xi} f_{\beta} .
$$

Otherwise $\eta=\kappa+1$ for some κ.

STEP I

In this step we make sure that (VI) holds.

Construction

Assume that for each β (number of generator) ${ }_{\xi} f_{\beta}$ are constructed for $\xi<\eta$. If η is a limit cardinal then for each β we let

$$
{ }_{\eta} f_{\beta}=\bigcup_{\xi<\eta}{ }_{\xi} f_{\beta} .
$$

Otherwise $\eta=\kappa+1$ for some κ.

STEP I

In this step we make sure that (VI) holds.
If $\left\langle 0, x_{\kappa}\right\rangle \in \operatorname{LIN} \mathbb{Q}_{(}\left({ }_{\kappa} h_{\alpha_{\kappa}}\right)$, we don't change anything. Let's look at the other case.

Let

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ \circ_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$.

Let

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ \circ_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the linear subspace of \mathbb{R} generated by the set of real numbers that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points, but from the (IV) condition we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.

Let

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the linear subspace of \mathbb{R} generated by the set of real numbers that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points, but from the (IV) condition we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F.

Let

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the linear subspace of \mathbb{R} generated by the set of real numbers that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points, but from the (IV) condition we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$.

Let

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ \circ_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the linear subspace of \mathbb{R} generated by the set of real numbers that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points, but from the (IV) condition we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$. Then we have to choose

$$
2 \cdot \sum\left|k_{i}\right|
$$

pairs of points and add them to appropiate $f_{\gamma_{i}}$'s in the way that $\langle x, y\rangle,\left\langle-x, x_{\kappa}-y\right\rangle$ are in the extended ${ }_{\kappa} h_{\alpha_{\kappa}}$.

Let

$$
{ }_{\kappa} f_{\gamma_{1}}^{k_{1}} \circ \ldots \circ{ }_{\kappa} f_{\gamma_{m}}^{k_{m}}
$$

be the reduced form of the (partial) word ${ }_{\kappa} h_{\alpha_{\kappa}}$. Let F be the linear subspace of \mathbb{R} generated by the set of real numbers that were involved in the definition of one of those $f_{\gamma_{i}}$'s plus the point x_{κ}. This is set of "forbidden" points, but from the (IV) condition we know, that $F \neq \mathbb{R}$. This gives us a lot of freedom to add new points to functions.
First we choose x linearly independent of F. Then we choose y independent of $F \cup\{x\}$. Then we have to choose

$$
2 \cdot \sum\left|k_{i}\right|
$$

pairs of points and add them to appropiate $f_{\gamma_{i}}$'s in the way that $\langle x, y\rangle,\left\langle-x, x_{\kappa}-y\right\rangle$ are in the extended ${ }_{\kappa} h_{\alpha_{\kappa}}$. It is easy to check that conditions (I)-(IV) still hold. (V) remains true because we were chosing point that were linearly independent.

Construction

STEP II and STEP III

In these steps we have to make conditions (VII) and (VIII) hold. The argument showing that it can be done without breaking conditions (I)-(V) is the same - the set of "forbidden" point is not equal to \mathbb{R}.

Construction

STEP II and STEP III

In these steps we have to make conditions (VII) and (VIII) hold.
The argument showing that it can be done without breaking conditions (I)-(V) is the same - the set of "forbidden" point is not equal to \mathbb{R}.
At the end we let ${ }_{\kappa+1} f_{\beta}$ be the extended version of ${ }_{\kappa} f_{\beta}$ or ${ }_{\kappa+1} f_{\beta}={ }_{\kappa} f_{\beta}$ if it was not changed in steps I-III.

Problems

Problem

Does there exists a group of Hamel bijections with 2^{c} generators?

Problems

Problem

Does there exists a group of Hamel bijections with 2^{c} generators?

Question to the audience

Do you know other examples of large free groups within some structures?

Problems

Problem

Does there exists a group of Hamel bijections with 2^{c} generators?

Question to the audience

Do you know other examples of large free groups within some structures?

Thank you for your attention!

References

围 G. Matusik, T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hungar., 126 (3), 2010, 209-229.

國 K. Płotka, On functions whose graph is a Hamel basis, Proc. Amer. Math. Soc., 131, 2003, 1031-1041.

